Skip to Main Content U.S. Department of Energy
Applied Materials & Manufacturing Group banner

Suveen Mathaudhu

Suveen Mathaudhu

Pacific Northwest National Laboratory
PO Box 999
Richland, WA 99352


Dr. Suveen Mathaudhu joined the Pacific Northwest National Laboratory as a joint-appointee from the University of California, Riverside, Mechanical Engineering Department and Materials Science and Engineering Program. He currently serves as Thrust Lead for Nanocomposites within the Materials Simulation and Synthesis Across Scales (MS^3) laboratory-level initiative. This thrust focuses on the fundamental design and scale up of thermally-stable advanced functional and structural materials. Dr. Mathaudhu's research background centers on the synthesis and processing of advanced nanostructrured metallic alloys and composites. Prior to joining PNNL/UCR, he served as a Program Manager for the Synthesis and Processing program at the U.S. Army Research Office where he initiated a broad range of basic-research programs focusing on advanced structural and armor materials. Before this position, he was a Materials Engineer at the U.S. Army Research Laboratory, Weapons and Materials Research Directorate where he began his career as a ORISE Post-doctoral Fellow.

Dr. Mathaudhu has over 70 peer-reviewed publications, and 30 Invited lectures on topics ranging from advanced materials, to STEM education to career development. He is a Fellow of ASM International, and in 2015 was honored with the American Association of Engineering Society's Norm Augustine Award for Outstanding Achievement in Engineering Communication. He holds a B.S.E. degree from Walla Walla University, and M.S. and Ph.D. degrees from Texas A&M University, all in Mechanical Engineering.

Research Interests

  • Ultrafine-grained and nanostructured materials by severe plastic deformation
  • Processing and consolidation of metastable particulate materials
  • Microstructural optimization of lightweight/high-specific strength metals and refractory metals
  • Tailored nanocrystalline microstructures with high thermal stability
  • Deformation mechanisms in nanocrystalline metallic alloys
  • High-rate mechanical response of fine-grained materials
  • Computational materials simulation and design.

Education and Credentials

  • Post-doc, Weapons and Materials Research Directorate, U.S. Army Research Laboratory, MD (2006-2008)
  • Ph.D., Mechanical Engineering, Texas A&M University, TX (2006)
  • M.S. Mechanical Engineering, Texas A&M University, TX (2001)
  • B.S.E. Mechanical Engineering, Walla Walla University, WA (1998)

Affiliations and Professional Service

  • The Minerals, Metals and Materials Society (TMS)
  • ASM International
  • The Materials Research Society (MRS)
  • American Society of Mechanical Engineers (ASME)

Awards and Recognitions

  • Fellow of ASM International (2015)
  • AAES Norm Augustine Award for Outstanding Achievement in Engineering Communication (2015)

PNNL Publications


  • Li Y., S. Hu, E.I. Barker, N.R. Overman, S.A. Whalen, and S. Mathaudhu. 2020. "Effect of grain structure and strain rate on dynamic recrystallization and deformation behavior: a phase field-crystal plasticity model." Computational Materials Science 180. PNNL-SA-144520. doi:10.1016/j.commatsci.2020.109707


  • Devaraj A., W. Wang, V.R. Vemuri, L. Kovarik, X. Jiang, M.E. Bowden, and J.R. Trelewicz, et al. 2019. "Grain Boundary Segregation and Intermetallic Precipitation in Coarsening Resistant Nanocrystalline Aluminum Alloys." Acta Materialia 165. PNNL-SA-135423. doi:10.1016/j.actamat.2018.09.038


  • Darsell J.T., N.R. Overman, V.V. Joshi, S. Mathaudhu, and S.A. Whalen. 2018. "Shear Assisted Processing and Extrusion (ShAPE) of AZ91E Flake: A Study of Tooling Features and Processing Effects." Journal of Materials Engineering and Performance 27, no. 8:4150-4161. PNNL-SA-129883. doi:10.1007/s11665-018-3509-1
  • Jayaraman T.V., V.M. Meka, X. Jiang, N.R. Overman, J. Doyle, J.E. Shield, and S. Mathaudhu. 2018. "Investigation of structural and magnetic properties of rapidly-solidified iron-silicon alloys at ambient and elevated temperatures." Journal of Alloys and Compounds 741. PNNL-SA-129202. doi:10.1016/J.JALLCOM.2018.01.088
  • Overman N.R., X. Jiang, R.K. Kukkadapu, T. Clark, T.J. Roosendaal, G.W. Coffey, and J.E. Shield, et al. 2018. "Physical and electrical properties of melt-spun Fe-Si (3-8 wt%) soft magnetic ribbons." Materials Characterization 136. PNNL-SA-129219. doi:10.1016/j.matchar.2017.12.019


  • Jiang X., S.A. Whalen, J.T. Darsell, S. Mathaudhu, and N.R. Overman. 2017. "Friction Consolidation of Gas-Atomized Fe-Si Powders for Soft Magnetic Applications." Materials Characterization 123. PNNL-SA-120598. doi:10.1016/j.matchar.2016.11.026
  • Nandipati G., X. Jiang, V.S. Vemuri, S. Mathaudhu, and A. Rohatgi. 2017. "Self-Learning Kinetic Monte Carlo Simulations of Diffusion in Ferromagnetic a-Fe-Si alloys." Journal of Physics: Condensed Matter 30, no. 3:Article No. 035903. PNNL-SA-124267. doi:10.1088/1361-648X/aa9774
  • Overman N.R., S.A. Whalen, M.E. Bowden, M.J. Olszta, K. Kruska, T. Clark, and E.L. Stevens, et al. 2017. "Homogenization and Texture Development in Rapidly Solidified AZ91E Consolidated by Shear Assisted Processing and Extrusion (ShAPE)." Materials Science and Engineering. A. Structural Materials: Properties, Microstructure and Processing 701. PNNL-SA-122981. doi:10.1016/j.msea.2017.06.062


  • Overman N.R., S. Mathaudhu, J. Choi, T.J. Roosendaal, and S.G. Pitman. 2016. "Microstructure and Mechanical Properties of a Novel Rapidly Solidified, High-Temperature Al-Alloy." Materials Characterization 112. PNNL-SA-112327. doi:10.1016/j.matchar.2015.12.015


  • Mathaudhu S., and B.L. Boyce. 2015. "Thermal Stability: The Next Frontier for Nanocrystalline Materials." JOM. The Journal of the Minerals, Metals and Materials Society 67, no. 12:2785-2787. PNNL-SA-115364. doi:10.1007/s11837-015-1708-x

About AMM

Related Links


Additional Information